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Introduction

The challenge of the study of gas-solid turbulent flows arises because of the complexity

of physical interactions between the two phases. Research needs are also not universal for

different situations. Depending on the particle loading ratios, particle sizes and particle-

particle collision frequencies, the flow of gas-particle mixture law can be classified as dense

flows or dilute flows. The characteristic dimensions of the distribution of particles in turbu-

lent flows may determine whether the two-phase mixture can be regarded as a continuum

or not [1,2]. In a dilute suspension flow in which particle motion is controlled by the aero-

dynamic forces on the particle, Crowe [3] has suggested a criterion for treating the particle

cloud as a continuum. In this case, the Stokes number (St) which is defined St = vrTt./Ac

, where vr is the slip velocity between two phases, t. is the particle relaxation time and

Ac the distance traveled between collisions, should be less than 0.1 and depending on the

magnitude of flow Reynolds number, boundary conditions for particulate phase have to be

modified.

In this paper, scaling factors determining various aspects of particle-fluid interactions

and the development of physical models to predict gas-solid turbulent suspension flow fields

will be discussed based on two-fluid, continua formulation.

Scaling Rules

The motions of particles in a turbulent flow field are determined by relative density,

particle size, inertia, free fall velocity, as well as the correlation between particles and

underlying flow turbulence. On the other hand, the particulate phase may influence the

turbulence energy spectrum of the gas phase in wave nmnber ranges corresponding to the

size of spacing of dispersed-phase dimensions [4]. To investigate the various modes of in-

teraction, the relaxation time t. of particles has to be compared with various characteristic

1 _ a__ is a measure oftimes of the underlying flow field, t., in its simplest definition = l-g o , '

how quickly a particle of density ps and diameter dp can respond to changes in the ambient

fluid velocity, u is the kinematic viscosity of the fluid. In the continuum mixture theory,

t. can be redefined based on a particle Reynolds number weighted by the concentration of
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solids [5]. If t. is small compared with a time scale corresponding to some particular flow

structure, then the particle will follow the motion of that structure; if not, the particle will

tend to be uncoupled from these motion.

Hinze [4] pointed out that the dynamic behavior of a discrete particle will not be

determined by the eddies of size much smaller than that of the particles. The effect of

these smaller eddies will tend to average out over the particle surface. In the case of

turbulent flows, this requires that the particle size be smaller than the important dynamic

scales of turbulence before the time scale ratio becomes a useful measure of the particle-

fluid interaction.

Let us consider the dynamically smallest eddies in the turbulent flow. These eddies

can be characterized by the Kohnogorov microscale _1, and the characteristic time scale r

is of order (_/e) 1/2. The ratio of the particle relaxation time to this time then becomes
2

T "_ _,_2_o So for the typical suspension problem we are interested in, i.e., Ps/P _> O(102),

the particles have to be at least one order of magnitude smaller than the Kohnogorov

length scale in order to be subjected to the motion of the smallest eddies.

Direct interaction between particles which results from particle-particle collisions can

be estimated from the ratio of t. and the time scale between particle collisions tc which

is given [4] _-- O( 1_) for particles of uniform size dp. v_ is the relative velocity between

particles and n is the particle number density. For the case t./tc << 1, the particle has time

to respond to the local velocity field before the next collision so its motion is dominated

by the supporting flow forces and the collision which leads to direct interaction between

particles can be neglected. Then a solid particle is subjected to a variety of time-varying

forces by the ambient fluid flow. For particles with p_/p > 102, the governing forces due

to inertia effect ( drag ) and crossing trajectory effect have been singled out [6,7,8]. To

describe the behavior of particles in a turbulent flow, the simplified Basset, Boussinesq

and Oseen (BBO) equation has to be solved. This equation in principle cannot be solved

unless the relation of the Lagrangian and Eulerian correlations of the random fluid field is

known rigorously. However, the particle trajectory can be determined similar to a random

walk computation [9] in which a dispersed-phase element is assumed to interact with an

typical turbulent eddy as long as the relative displacement of the element with respect to

the eddy does not exceed the characteristic eddy size, l_, and the time of interaction does

not exceed the characteristic eddy time, t_. The selections of l_ and t_ are cleanly arbitrary

since turbulent flows composed a spectrum of length scales and time scales.

To gain some insight of the scaling rule for turbulent dispersion, the fundamental

dispersion results of Snyder and Lumley [6] are used to compare with the stochastic pre-

dictions. The experiments involved the dispersion of individual particles which were isoki-

netically injected into a grid-generated turbulent flow. The mean flow are uniform in

the test region and the detailed turbulent structure were measured downstream of the
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injection point. Since the grid-generatedturbulent field is homogeneousdecaying and is
approximately isotropic with fluctuating intensity decreasingin the direction of the mean
flow. Typically, grid turbulence is also characterized by self-similar spectral distribution
in which a local set of characteristiceddy time scalecan be identified. Following Gosman
and Ioannides, the eddy time scaleis evaluated from the expressionte = l,(2k)-XT and

3 g

l_ = C_ k _/e, where k is the turbulent kinetic energy (= 1_ ,_ _-ffuiui) and e is the isotropic tur-

bulent kinetic energy dissipation rate and C_, = 0.09. The ratios of t. over eddy time scales

for the three types of mono-dispersed particles used in Snyder and Lumley's experimental

setup are plotted on Figure 1. Mean-squared radial dispersion of the particles is plotted

as a function of the residence time in the flow for three types of particles.
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Figure 1. Time scale ratio of various particles in a uniform grid generated turbulent flow

The results are obtained by averaging over 2000 particles following a 4th-order Runge-

Kutta integration of the simplified BBO equation ( only inertia term retained ) using 10

percent of interaction time as integration time step. The agreement between the stochastic

model predictions and the measurements for the case of corn pollen ( with material density

1000kg/m a and 87#m diameter ) are much better compared to the other two cases of

hollow glass particles and copper particles. This is not surprising in viewing the scaling

rules involved ( see Figure 1 ): the corn pollen particles are most closely associated with the

turbulent time scales responsible for dispersion. For light particle such as glass particles,

the turbulent eddies responsible for the dispersion should be of higher frequency ( smaller

time scales ), probably Kolmogorov time scales. The net results is that the numerical

model underpredicts the dispersion. On the other hand, copper particles should interact
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with eddiesassociatedwith larger time scales.Using the integral time scale(t_) results in
overpredicting the turbulent dispersionby inertia, effects.
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Figure 2. Predicted and Measured particle dispersion in a uniform grid generated turbulent fl_m'

The numerical models used for the calculation in this study do not account for the

crossing trajectory effect due to the particle free fall. For the particles studied, especially

heavy particles, inertia and crossing trajectories are inseparable at the very downstream

of the decay. According to the scaling rule, gravity has an influence on the two-phase

flow when ut _ u', where ut is the terminal velocity (= gt.) and u' is the characteristic

?t p 2 ae ,velocity scale of turbulence. In the grid turbulence U--_-_ c'X (_.)-1 thus we expect the

free-fall effects to be insignificant in the decay of the grid turbulence if _ << O( _ )1/2
gt.

Here, UM is the mean longitudinal velocity along x-axis and M is the mesh size. Only

for the smaller particles with t, _< 10 msec this condition can be satisfied. However, the

above calculations indicate the close relationship between the scale parameters and the

particle-fluid interactions.

Two-Phase Turbulence Modeling

In most turbulent multiphase flows of practical interest there exists a spectrum of

dispersed phase time and length scales. Despite the abundant use of single time and

length scale models ( such as the k - e model ), the underlying carrying gas turbulence

is also dominated by a variety of time scales. A two-phase two-scale turbulence model
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based on continuum approach has since been developed [10] according to the scaling rule

described above. The modification of particles on the turbulence, the so called modulation

effect, has been taken into account for large eddies by mean slip between two phase and

small eddies caused by the particle slip velocity on the fluctuation level.
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Figure 3. Mean axial velocity profiles across the pipe of gas phase and particulate phase

The turbulent transport equations are summarized here:

0 (Uikp)= 0 vt OkpOxi 9_ ( Ox, ) + Pk - _,,- --
O'kp

I ul

pt,

0 (Uikt) = 0 ( ut Okt 2kp_-(l_exp[_lt..)
Ox, _ _, Ox, )+_-_' t. p _-_l (2)

o (u,_.) = o( _ o_ _
Ozi Ozi a_, Oxi ) + k---p(CplPk - Cp2%)

(3)

0 0 ut Oct % , 2p--pet
ox, (U_') = _-_,(o-_,Ox_)+ _(c,,_p- c,_,)- p t. (4)
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Here, the k v and kt are turbulent kinetic energy of the large-scale energetic eddies

and the small-scale transfer eddies and ep is the energy transfer rate from the large eddies

to the transfer eddies. This model composed of two set of scales for gas-phase turbulence.

The model is valid for the situation rp(= _) > t, >> r ( Kolmogorov time scale ) and

particle loading ratio ( pp/p ) of order of 1. This model has been applied to a gas-solid

suspension pipe flow by Tsuji et al [11]. In Figure 3, the comparisons are made for two

particle loadings with dp = 200/m_. The predicted velocity profiles are flatter than the

experimental data and the relative velocities between two phases decrease with increasing

particle loadings. The distance of the sign change of the slip velocity shifts toward the

wall for larger particle loadings. The flattening effect by the particles on the fluid velocity

distributions can be observed in the Figure 4. Besides this flattening effect, the point of

maximum gas phase velocity even deviates from the pipe axis as the loading increases.

Such a concave profile indicate counter-diffusion type of momentum transport and cannot

be predicted by the current model. It is interesting to note that such profiles were not

found in other LDV measurements for similar configuration [12,13], this phenomena should

await further experimental confirmation.
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Figure 4. Effect of particle loadings on gas phase velocity profiles

The modulation effect of particles on the turbulence is shown in Figure 5 for longi-

tudinal turbulence intensity profiles for 200/mz particles. Cases with particle size greater

than 200FLm were not computed due to model limitation based on the scaling rules. It is
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known that fluid turbulence is greatly influenced by the particles and the mode of influ-

ence differs with particle size. For larger particles (>_ 300pro), the turbulence intensities

of the fluid are increased due to the presence of particles while suppression of the turbu-

lence properties is observed for smaller particles. It is seen in Figure 5 that for a particle

loading of 0.9 the turbulence intensities are reduced by 30 % in the core region. However,

the intensity in the core region increases again as the particle loading increases from 0.9

to 3.2 and the intensity in the wall region is monotonously damped. This phenomenon

can be explained by the competitive mechanism between modulation due to mean motion

and fluctuation motion. The small scale modulation effect always acts as a sink term in

the kt equation while the large eddy motion modulation effect can be extra production

or dissipation depending on the signs of (Ui - Vi) and the distribution of mean particle

density profiles. The cross-over of the intensity profiles is closely related to the cross-over

of mean velocity profiles of gas phase and particulate phase. The relative magnitude of

the modulation effects is reasonably well represented by the model.
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Figure 5. Modulation Of particles on gas phase turbulence intensities

S umlnary

The modes of particle-fluid is discussed based on the length and time scale ratio, which

depends on the properties of the particles and the characteristics of the flow turbulence.

For particle size smaller than or comparable with the Kolmogorov length scale and con-
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centration low enough for neglecting direct particle-particle interaction, scaling rules can

be established in various parameter ranges. The various particle-fluid interaction will give

rise to additional mechanisms which will affect the fluid mechanics of the conveying gas

phase. These extra mechanisms are incorporated into turbulence modeling method based

on the scaling rules. A multiple-scale two-phase turbulence model has been developed,

which gives reasonable predictions for dilute suspension flow. Much works is yet to be

done to account for the poly-dispersed effects and the extension to dense suspension flows.
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